
www.exmachina.ch

in <code> we trust

Spring in the 
insurance world

Mario Fusco
mario@exmachina.ch

Spring Day 2008, 14 giugno Cagliari



w w w . e x m a c h i n a . c h

Agenda

System architecture

The big picture

How Spring fits all

Spring features

Decoupling with application events

Implementing a workflow with jBPM

Managing transactions declaratively



w w w . e x m a c h i n a . c h

Web
Layer

Services

Workflow

XML Marshaller AuditTrail

MailSender

Data Access Layer Domain Objects

DI

DI
DI

DI

Acegi Transaction

Hibernate

JavaMail
Sender

jBPM

MaintenanceMBean JMX Quartz

Aspect

The big picture

Bean Wiring AOP Services JMXExternal tools

Database

EventEvent Autosave



w w w . e x m a c h i n a . c h

Dependency injection is the primary
way that Spring promotes loose

coupling among application objects …

Bean A Bean A

Bean B

Decoupling dependecies with DI

Dependency Injection



w w w . e x m a c h i n a . c h

Decoupling dependecies

… but it isn’t the only way



w w w . e x m a c h i n a . c h

The loosest coupled way for objects to 
interact with one another is to publish 

and listen for application events.

• An event publisher object can 
communicate with other objects 
without even knowing which 
objects are listening

Publisher

Listener

Publisher/
Listener

Event A

Event B

Event C

• An event listener can react to 
events without knowing which object 
published the events

• In Spring, any bean in the 
container can be either an event 
listener, a publisher, or both

Decoupling with applications events



w w w . e x m a c h i n a . c h

Publishing events

public class CustomEvent extends ApplicationEvent {
public CustomEvent(Object source) {

super(source);
}

}

To publish an event first it needs to define the event itself:

Next you can publish the event through the ApplicationContext :

applicationContext.publishEvent(new CustomEvent(thi s));

This means that, in order to publish events, your beans will need to 
have access to the ApplicationContext . The easiest way to achieve it 
is to hold a static reference to the context in a singleton that’s made 
aware of the container by implementing ApplicationContextAware



w w w . e x m a c h i n a . c h

Listening for application events

To allow a bean to listen for application events, it needs to register it within
the Spring context and to implement the ApplicationListener interface

public class CustomListener implements ApplicationLi stener {
public void onApplicationEvent(ApplicationEvent even t) {

if (event instanceof TypedEvent) {
// Reacts the the event ...

}
// Discards the non interesting event

}
}

Unfortunately, this will make your bean to listen for ALL the events
triggered inside the container and you’ll have to discard the non 
Interesting ones (the biggest part) typically by some instanceof



w w w . e x m a c h i n a . c h

Listening for a specific event

We fixed this
issue by
replacing the 
Spring’s 
default events
multicaster
with one that
notifies only
the interested
listener

<bean id="applicationEventMulticaster" 
class="ch.exm.util.event.TypedApplicationEventMulti caster“/>



w w w . e x m a c h i n a . c h

Overriding the event multicaster

public class TypedApplicationEventMulticaster
extends 

SimpleApplicationEventMulticaster {

public void addApplicationListener(ApplicationListe ner listener) {
if (listener instanceof TypedApplicationListener) {

listenerMap.put(listener.getListenedEventClass(), 
listener);

} else super.addApplicationListener(listener);
}

public void multicastEvent(ApplicationEvent event) {
notifyListener(listenerMap.get(event.getClass()));

}

private void notifyListener(TypedApplicationListene r listener) {
getTaskExecutor().execute(new Runnable() {

public void run() { listener.onTypedEvent(event); } });
}

indexes the listeners by listened event type

notifies only the interested listeners … … in a separate thread



w w w . e x m a c h i n a . c h

Listening for a specific event

Through the TypedApplicationEventMulticaster your bean can be 
notified of just a specific class of events by implementing this interface

interface TypedApplicationListener<T extends Applic ationEvent> 
extends 

void onTypedEvent(T event);

Class<T> getListenedEventClass();
}

or even easier by extending the following abstract class

abstract class TypedApplicationListenerAdapter<T> 
implements TypedApplicationListener

public void onApplicationEvent(ApplicationEvent even t) {
onTypedEvent((T) event);

}
}

The event multicaster notifies this
listener only for the event of type T

Declares the Class of events this bean is listening for

Reacts only to events of type T



w w w . e x m a c h i n a . c h

Implementing a workflow with
jBPM



w w w . e x m a c h i n a . c h

Web
Layer

Services

Workflow
Autosave

XML Marshaller AuditTrail

MailSender

Data Access Layer Domain Objects

DI

DI
DI

DI

Acegi Transaction

Event

Hibernate

JavaMail
Sender

jBPM

MaintenanceMBean JMX Quartz

Aspect

The big picture

Bean Wiring AOP Services JMXExternal tools

jBPM

Database

Integrating jBPM and Spring



w w w . e x m a c h i n a . c h

Implementing a workflow with
jBPM

jBPM is the JBoss implementation of a BPM (Business Process
Management) system. Its main characteristics and feature are:

It has an extensible engine that executes process definitions 
with tasks, fork/join nodes, events, timers, automated actions, etc.

It can be configured with any database and it can be deployed 
on any application server or used a simple java library

It allows to configure a workflow process via a simple XML file 
where workflow’s state and transition are defined as it follows

<start-state name="start">
<transition name="start" to="prospect"></transition >

</start-state>
<state name="prospect">

<transition name="request_approval" to="uw_approval “/>
<transition name="request_quotation" to="retro_quot ation“/>

</state>



w w w . e x m a c h i n a . c h

An insurance policy lifecycle



w w w . e x m a c h i n a . c h

Integrating jBPM in Spring

There's a Spring Module that makes it easy to wire jBPM with Spring

It allows jBPM's underlying Hibernate SessionFactory to be configured 
through Spring and jBPM actions to access Spring's context …

… and offers convient ways of working directly with process 
definitions as well as jBPM API through the JbpmTemplate

<bean id="jbpmConfiguration" class="org.springmodul es.
workflow.jbpm31.LocalJbpmConfigurationFactoryBean">

<property name="sessionFactory" ref="sessionFactory "/>
<property name="configuration" value="classpath:jbp m.cfg.xml"/>

</bean>

<bean id="jbpmTemplate" class="org.springmodules.
workflow.jbpm31.JbpmTemplate">

<property name=" jbpmConfiguration" ref=" jbpmConfi guration"/>
</bean> 



w w w . e x m a c h i n a . c h

Calling jBPM API with
JbpmTemplate

JbpmTemplate eases to work with the jBPM API taking care of handling 
exceptions, the underlying Hibernate session and the jBPM context.

For instance to execute a workflow transition in a transactional way:

jbpmTemplate.signal(processInstance, transactionId) ;

It’s also possible, as with every Spring-style template, to directly 
access to the native JbpmContext through the JbpmCallback : 
public ProcessInstance createProcessInstance() {

return (ProcessInstance)jbpmTemplate.execute(new
JbpmCallback(){ 

public Object doInJbpm(JbpmContext context) { 
GraphSession g = context.getGraphSession();
ProcessDefinition def = 

g.findLatestProcessDefinition();
ProcessInstance instance = 

def.createProcessInstance();
jbpmContext.save(instance);
return instance;

} }); }



w w w . e x m a c h i n a . c h

Transactions in Spring



w w w . e x m a c h i n a . c h

Web
Layer

Services

Workflow
Autosave

XML Marshaller AuditTrail

Data Access Layer Domain Objects

DI

DI
DI

DI

Acegi Transaction

Event

Hibernate

JavaMail
Sender

jBPM

MaintenanceMBean JMX Quartz

Aspect

The big picture

Bean Wiring AOP Services JMXExternal tools

Database

nsaTra ction

MailSender

Transactions in Spring



w w w . e x m a c h i n a . c h

Transaction’s attributes

In Spring declarative transactions are implemented through its AOP 
framework and are defined with the following attributes:

Isolation level defines how much a transaction may be impacted 
by the activities of other concurrent transactions

Rollback rules define what exception prompt a rollback (by default 
only the runtime ones) and which ones do not

Timeout

Propagation behavior defines the boundaries of the transaction

Read-only

Transaction A - REQUIRES_NEW

Transaction B
REQUIRED

Propagation

Read-only & Timeout

Exception?

Commit

Rollback

Transaction C

Isolation
REPEATABLE_READ



w w w . e x m a c h i n a . c h

Choosing a transaction manager

Spring supports transactions programmatically and even declaratively by 
proxying beans with AOP. But unlike EJB, that’s coupled with a JTA (Java 
Transaction API) implementation, it employs a callback mechanism that 
abstracts the actual transaction implementation from the transactional code.

Spring does not directly manage transactions but, it comes with a set 
of transaction managers that delegate responsibility for transaction 
management to a platform-specific transaction implementation. 

For example if your application’s persistence is handled by Hibernate
then you’ll choose to delegate responsibility for transaction management
to an org.hibernate.Transaction object with the following manager:

<bean id="transactionManager“ class="org.springframe work.

orm.hibernate3.HibernateTransactionManager">
<property name="sessionFactory" ref=“sessionFactory "/> 
<property name="dataSource" ref=“dataSource"/>

</bean>



w w w . e x m a c h i n a . c h

Managing transactions
declaratively

Spring 2.0 adds two new kinds of declarative transactions that can be 
configured through the elements in the tx namespace:

xmlns:tx=http://www.springframework.org/schema/tx

by adding the spring-tx-2.0.xsd schema to the Spring configuration file:
http://www.springframework.org/schema/tx/spring-tx- 2.0.xsd

The first way to declare transactions is with the <tx:advice> XML element:
<tx:advice id="txAdvice“ transaction-manager="transac tionManager">
<tx:attributes>

<tx:method name=“set*" propagation="REQUIRED" />
<tx:method name=“get*" propagation="SUPPORTS“ read- only="true"/>

</tx:attributes></tx:advice>

This is only the transaction advice, but in order to define where it will be 
applied, we need a pointcut to indicate which beans should be advised:
<aop:config>

<aop:advisor pointcut="execution(* *..MyBean.*(..))“
</aop:config>

advice-ref="txAdvice"/>



w w w . e x m a c h i n a . c h

Defining annotation-driven 
transactions

The second (and easiest) way to declaratively define transactions in 
Spring 2.0 is through annotations. This mechanism can be enabled as
simple as adding the following line of XML to the application context:

<tx:annotation-driven transaction-manager="transact ionManager"/>

This configuration element tells Spring to automatically advise, with 
the transaction advice, all the beans in the application context that are 
annotated with @Transactional , either at the class level or at the 
method level. This annotation may also be applied to an interface.

The transaction attributes of the advice are defined by parameters of 
the @Transactional annotation. For example our previously illustrated
WorkflowService performs a workflow transition in a transactional way:

@Transactional(propagation=Propagation. REQUIRED, readOnly=false)
void doWkfTransition(WkfObj wkfObj, String transitio nName);



w w w . e x m a c h i n a . c h

Mario Fusco
Head of IT Development

mario@exmachina.ch


