Gridify
your Spring application
with Grid Gain

Sergio Bossa
Pro-Netics / Sourcesense

<}\t)&SOUFC@SEI‘\SE
oYo

About me

« Software architect and engineer
> Pro-Netics (http://www.pronetics.it)

> Sourcesense (http://www.sourcesense.com)

v Blogger
> http://sbtourist.blogspot.com

« Open Source Enthusiast
> Lead at Scarlet - Clustering for Jira (http://scarlet.sf.net)

> Committer at Spring Modules
(http://springmodules.dev.java.net)

> Committer at Taconite Ajax Framework
(http://taconite.sourceforge.net/)

Agenda

« Common ground.
> Why Grid?
> Performance and Scalabillity.
> Map / Reduce.
« Grid Gain and The Spring Framework.
> Grid Gain concepts.
> Grid Gain on Spring.

> A practical example.

Why grid?
Social changes

« Cheaper hardware.
> Computer as an off-the-shelf product.
« Web explosion.
> Everything is on the web.
> Everyone is on the web.
> More and more users.

> More and more transactions.

Why grid?
Technological changes

« Cheaper hardware.
> We have more power.
> We want more speed.

« Moore's Law: the number of transistors that can be
Inexpensively placed on an integrated circuit is
Increasing exponentially.

> But we had to go from single-core processors to multi-
core ones ...

> So your for-loop will always run at the same speed.

> Forever.

Performance

It's all about doing one thing.
Faster.

Scalability

It's all about doing the same one thing.
In a bigger way.

L o,
-

-
T g e S i - e i,)
™ o al_ - e | ¥
[.t'—'. -_.--!-..‘.lF. a = F 7 i ¥ @ ¥
My, v
Ty L o 1
g | .

Performance vs Scalabillity

v Performance is about how fast.
« Scalabillity is about how much.

« Nowadays, if you want to save your job and hears
(remember that Boss screaming at your face) ...

> You have to scale.

Scalability in two words

v Vertical scalability is about adding more and more
power (CPU, RAM ...) to your single computer.

> Also known as scaling-in.
> Finite and costly.

» Horizontal scalability is about adding more and more
computers.

> Also known as scaling-out.

> |nfinite and cheaper, because using commodity
hardware.

v Guess what, we want to scale-out ...

The scalability factor

v Avalilable resources while scaling out.
> Linear scalability.
> Supra-linear scalability.
> Sub-linear scalability.
> Negative scalability.

« A scalable application should always strive for (almost)
linear scalability.

The scalability problem

« Amdahl's Law: performance decreases as number of
processors increases once there is even a small
percentage of non-parallelizable code.

> Most of the software is written in a non-parallelizable
way.

> Writing software that scales out is perceived as hard.

Entering Map / Reduce

« From Google Labs.

> |s it enough?

Map / Reduce explained

« Programming model for linearly scaling out.

« De-facto standard for parallelizing intensive processing
tasks.

v Based on:

> Splitting tasks into several parallelizable jobs grouped
by key.

> Mapping jobs to processing units, optionally taking
into account the job key.

> Merging jobs results, joining them into a global task
result.

Map / Reduce illustrated
Counting words

“Reduce

@

@

@
w
i
B

L
j=1

it
|:>

UL

Grid computing with Map / Reduce

» Grid computing.

> Basically, a way to exploit multi-core / multi-
processors / multi-computer environments for
achieving horizontal scalability.

« Map / Reduce.

> Common paradigm in grid computing for
implementing scalable applications.

Entering Grid Gain
Open Source Grid Computing Framework.
> Web : http://www.gridgain.com
> Created and supported by Grid Gain Systems.
> Community support.
> Professional support.

Powerful, yet simple, yet fun, Map / Reduce
implementation.

Integrated with major servilet containers and application
servers.

Integrated with major data grid solutions.

Integrated with the Spring Framework.

2]

a\;

Map / Reduce in Grid Gain

-1 -
Task arrives to the first grid node, where is
split into three jobs.

First job is self-assigned and processed.
-2.

Second job is sent to the second grid node,
where is processed.

-3-

Third job is sent to a the third grid node,
where is processed.

-4 -

Result from the second job is collected by
the task on the first node.

A5

Result from the third job is collected by the
task on the first node.

-6 -

Collected job results, together with the
result from the first job, are reduced by the
task and returned as a global resulit.

Grid Gain Quick Start

GridTask.

> Implements the Map / Reduce logic.

GridJob.

> Implements the processing logic.
GridFactory.

> Provides access to the grid for executing tasks.
Automatic deployment.

> Tasks are automatically deployed to the grid.
Peer class loading.

> Needed classes are automatically loaded from peers.

Grid Gain Advanced

v SPI (Service Provider Interface) based configuration.

> Discovery SPI.

> Topology SPI.

> Checkpoint SPI.

> Load Balancing SPI.
> Collision SPI.

> Failover SPI.

> Metrics SPI.

9 L B

Entering Spring Framework

The leading full-stack Java/JEE application framework.

Grid Gain on Spring

« POJO configuration.
« AOP grid execution.

v Resource Look-up.

Spring-based configuration

POJO-based.

Spring-based.

GridConfiguration

> Configure grid parameters.

> Configure actual SPI implementations.

> Declared as a Spring bean.

GridFactory

> GridFactory.start (GridConfiguration cfqg)
> GridFactory.start(String springCfqg)

AOP-based grid execution

Parallelization on grid as a cross-cutting concern.

Transparent task deployment and execution.

Gridify

> Annotation to identify methods that must be executed
on grid.

GridifySpringEnhancer

> Proxy-based enhancer for executing annotated object
methods on grid as an aspect.

Container-based resource look-
up.

« Spring application context as a source for resources

needed by tasks and jobs.

+ GridSpringApplicationContextResource

> Annotation for injecting the Spring application context
into tasks and jobs.

« GridFactory.start (GridConfiguration cfgqg,
ApplicationContext springCtx)

> Starts grid with a specific context to use for looking-up
resources.

An Example
The Business Problem

public class WordCounter {

@Gridify{taskClass = WordCounterGridTask.class, gridName = GridStarter.GRID NAME)
public Map=S5tring, Integer> count{Set<String= fileNames, Set<String> words) {
Map=5tring, Integer> result = new HashMap=String, Integer=();
for {(S5tring fileName : fileMames) {
String fileContent = this.readFile{fileName) ;
StringTokenizer fileTokenizer = new StringTokenizer({fileContent, " ,.;:v\niwrht™);
while {(fileTokenizer.hasMoreTokens()) {
String token = fileTokenizer.nextToken();
it {words.contains{token)) {
Integer wordDccurrency = result.get{token);

it {(wordDccurrency == null) {
result.put{token, 1);
} else {
result.put{token, ++wordOccurrency);
}
}
}
}
return result;
}
£

An Example
The Grid Task

public class WordCounterGridTask implements GridTask=GridifyArgument, Map=String, Integers> {

@GridLoadBalancerResource private GridLoadBalancer balancer;
@GridLoggerResource private GridLogger logger;

public Map<? extends Gridlob, GridNode> map{List<GridNode> nodes, GridifyArgument args) throws GridException {
Map<GridJob, GridNode= mapping = new HashMap<GridJob, GridNode={nodes.size());
Set<String> fileNames = (Set<String=) args.getMethodParameters()[0];
Set=String> words = (Set=S5tring=) args.getMethodParameters{)([1];
for {(5tring fileMame : fileNames) {
WordCounterGridJob job = new WordCounterGridJlob{fileName, words);
mapping.put{job, this.balancer.getBalancedNode({job)];

}
return mapping;
}
public GridJobResultPolicy result{GridJobResult currentResult, List<=GridJobResult> processedResults) throws GridException {
it {currentResult.getException{) == null) {
return GridJobResultPolicy.WAIT;
} else {
this.logger.error{currentResult.getException().getMessage{), currentResult.getException());
throw new IllegalStateException{currentResult.getException());
}
}

public Map<=S5tring, Integer> reduce{lList<GridJobResult> jobResults) throws GridException {
Map<String, Integer> globalResult = new HashMap=S5tring, Integer={);
for {GridJobResult jobResult : jobResults) {
Map=5tring, Integer> perlobOccurrencies = jobResult.getDatal);
for (String word : perJobOccurrencies.keySet()) {
Integer globalOccurrency = globalResult.get{word);

if {globallccurrency == null) {
globalResult.put{word, perJobOccurrencies.get({word));
} else {

globalResult.put{word, globalOccurrency + perlobOccurrencies.get{word));

}
}
}
return globalResult;

An Example
The Grid Job

public class WordCounterGridJob extends GridJobAdapter {

@GridSpringApplicationContextResource private ApplicationContext springContext;
@GridLoggerResource private GridLogger logger;

private WordCounter counter;

private String fileName;

private Set=S5tring> words;

public WordCounterGridlob{(String fileName, Set<String= words) {
this.fileName = fileName;
this.words = words;

public Serializable execute{) throws GridException {
this.counter = (WordCounter) this.springContext.getBean{"counter");
Map<S5tring, Integer> result = this.counter.count{new HashSet<String={Arrays.aslList{this.fileName)), this.words);
this.logger.info{"0Occurrencies found for " + this.fileName + " : " + result);
return {Serializable) result;

An Example
Grid Configuration

<beans xmlns="http:/ www.springframework.org/schema/beans”
¥xmlns:xsi="http:/ Swww.w3d.org/ 2001 /XML chema-1instance”
xmlns:;util="http:/'www.springframework.org/schemas/ut1l”
¥s1:schemalocation="
http: ./ fwww. springframework. org/schemasbeans http:/fwww. springframework.org/schemasbeans/spring-beans-2.0.xsd
http:/fwww. springframework.org/schema/util http:/ www.springframework.org/schema/util/spring-util-2.0.xsd">

<bean 1d="gridCfg" claoss="org.gridgoin.grid.GridConfigurationAdapter”=
<property name="gridName" =
<util:constant static-field="com.sourcesense.gridgain.wordcounter.grid.starter.GridStarter.GRID_NAME" />
</property=
<property name="gridGainHome" wvalue="/opt/gridooin-2.0.2"/>
<property name="checkpointSp1”>
<bean class="org.gridgain.arid.spi.checkpoint.sharedfs.GridSharedFsCheckpointSpl™=
<property name="directoryPath” value="/tmp/aridgain”/»
</ bean=
</property>
</bean=

<bean i1d="gridifiedCounter” class="org.gridgoin.grid.gridify.ocop.spring.GridifySpringEnhancer” factory-method="enhance">
<constructor-arg ref="counter"/=
</ bean=

<bean id="counter" closs="com.sourcesense.gridgain.wordcounter.WordCounter"” />

</beans=

An Example
Grid Starter

public class GridStarter {
public final static String GRID NAME = "WordCounterGrid";

public static void main{String(] args) throws GridException, InterruptedException {
ApplicationContext gridContext = new ClassPathXmlApplicationContext{"classpath:grid-context.xml");
try {
GridFactory.start{{GridConfiguration) gridContext.getBean({"gridCfg"), gridContext);
Thread.sleep(1B80000) ;
} finally {
GridFactory.stop{GRID NAME, false);
}

An Example
Grid Tester (...)

public class WordCounterGridTest extends AbstractDependencyInjectionSpringContextTests {

private final static String FILE 1 =
private final static String FILE 2 =
private WordCounter gridifiedCounter;
private GridConfiguration gridCtag;

“StmpStestl®;
“StmpSftestd”;

public WordCounterGridTest(String testName)
super{testName) ;
this.setAutowireMode (AUTOWIRE BY NAME) ;

public void setGridifiedCounter{WordCounter gridifiedCounter) {
this.gridifiedCounter = gridifiedCounter;

public void setGridCfg{GridConfiguration gridCfg) {
this.gridCfg = gridCfg;

An Example
Grid Tester (... continued)

public woid testGridifiedWordCounter{) {
try {
Map=5tring, Integer> result = this.gridifiedCounter.count|
new HashSet<String={Arrays.asList{(FILE 1, FILE 2)),
new HashSet<String={Arrays.asList{"java", "scala", "groovy")));

assertEquals(3, result.size());
assertEquals{new Integer{3), result.get{"java")]);
assertEquals{new Integer{3), result.get{"scala"));

assertEquals{new Integer{l), result.get{"groowvy"));
} catch {Throwable ex) {

ex.printStackTrace();

fail{ex.getMessage());

}

protected void onSetUp{) throws Exception {

it {GridFactory.getState(GridStarter.GRID NAME).equals{GridFactoryState.STOPPED)) {
GridFactory.start{this.gridCfg, this.applicationContext);
}

}

protected Stringl] getConfiglLocations{) {
return new Stringl[]l{"classpath:grid-context.xml"};
}

Q&A

Thank you

Sergio Bossa
s.bossa@pronetics.it
s.bossa@sourcesense.com

<}\t)&SOUFC@SEI‘\SE
oYo

