
INTALIO, LEADER IN OPEN SOURCE BPM 1C O N F I D E N T I A L

Comet Web Applications

Simone Bordet

sbordet@webtide.com

How to Scale Server-Side
Event-Driven Scenarios

INTALIO, LEADER IN OPEN SOURCE BPM 2C O N F I D E N T I A L

About me

Simone Bordet (sbordet@webtide.com)
Senior Java Engineer at Webtide

– Previously freelance, SimulaLabs, Hewlett-Packard

Active in OpenSource and Java Communities
– Jetty, Cometd, MX4J, Foxtrot, Livetribe, etc.
– Co-Leader of Java User Group Torino, Italy

Currently working on:
– Comet server-side and client-side applications

• Clients for browsers, J2ME and Android

– Server-side asynchronous IO and protocols

INTALIO, LEADER IN OPEN SOURCE BPM 3C O N F I D E N T I A L

Agenda

What are Comet web applications

Impacts of Comet web applications

The CometD project

Demo

Questions & Answers

INTALIO, LEADER IN OPEN SOURCE BPM 4C O N F I D E N T I A L

What are Comet
Web Applications

INTALIO, LEADER IN OPEN SOURCE BPM 5C O N F I D E N T I A L

Web Apps History

Web Classic Interaction

INTALIO, LEADER IN OPEN SOURCE BPM 6C O N F I D E N T I A L

Web Apps History

Web Classic Interaction

Request Pattern
Bursts of requests for HTML, images, CSS, JS

Navigation Mode
Full page based

Interaction with Server
Reactive, changes happen on user click
Resources download

INTALIO, LEADER IN OPEN SOURCE BPM 7C O N F I D E N T I A L

Web Apps History

Web Dynamic HTML Interaction

INTALIO, LEADER IN OPEN SOURCE BPM 8C O N F I D E N T I A L

Web Apps History

Web Dynamic HTML Interaction

Request Pattern, Navigation Mode, Interaction with
Server
Same as before

Uses JavaScript
 Input validation
DOM manipulation
Local UI effects

INTALIO, LEADER IN OPEN SOURCE BPM 9C O N F I D E N T I A L

Web Apps History

Web Classic + XMLHttpRequest

INTALIO, LEADER IN OPEN SOURCE BPM 10C O N F I D E N T I A L

Web Apps History

Web Classic + XHR
Request Pattern: changed

Bursts (for classic) + Concurrent (for XHR)
Requires synchronization in server code

Navigation Mode: radically changed
Sometimes full page, most often single page with partial

changes

Interaction with Server: changed
Reactive as before
Data download

INTALIO, LEADER IN OPEN SOURCE BPM 11C O N F I D E N T I A L

Server-side Events

Heavy usage of client-side JavaScript and XHR
changed the way we create and develop webapps
They become rich, and raise expectations

Traditionally, web experience was driven by the
client
Can webapps now be also driven by server-side events ?

INTALIO, LEADER IN OPEN SOURCE BPM 12C O N F I D E N T I A L

Server-side Events

Server-side Event-driven Polling Web
Application

INTALIO, LEADER IN OPEN SOURCE BPM 13C O N F I D E N T I A L

Server-side Events

Polling Strategy for Server-side Events Notification
Simple to implement (“I can do that !”)
Sensible latency for event notifications

Can look like a denial of service attack to the poor
server
When poll interval is short to reduce event latency
When the number of clients is large

We can do better !

INTALIO, LEADER IN OPEN SOURCE BPM 14C O N F I D E N T I A L

Server-side Events

Server-side Event-driven Comet Web
Application

INTALIO, LEADER IN OPEN SOURCE BPM 15C O N F I D E N T I A L

Server-side Events

Comet Strategy for Server-side Events Notification
Difficult to implement right
Minimal latency for event notification

One request (the “long poll”) is held by the server
until:
A server-side events arrives
A timeout expires
The client disconnects

INTALIO, LEADER IN OPEN SOURCE BPM 16C O N F I D E N T I A L

Impacts on the Server

INTALIO, LEADER IN OPEN SOURCE BPM 17C O N F I D E N T I A L

Polling vs Comet

What are the impacts of the polling and comet
models on servers ?

Polling
1000 clients, each polling every 5 seconds
Assume 100 ms poll processing time
Yields 200 requests/s, 20 concurrent requests
20 threads x 1 MB stack size = 20 MB

Limits
Most likely, the server is CPU bound, then connection

bound

INTALIO, LEADER IN OPEN SOURCE BPM 18C O N F I D E N T I A L

Polling vs Comet

Comet (Classic)
1000 clients, long poll timeout 20 seconds
Yields 1000 concurrent requests !
1000 x 1 MB stack size = 1 GB

Limits
Most likely, the server is memory bound
Note that stack memory is outside Java heap

INTALIO, LEADER IN OPEN SOURCE BPM 19C O N F I D E N T I A L

Polling vs Comet

Comet has huge impacts on server-side

You cannot just deploy your comet application in a
normal configuration

You cannot deploy your comet application behind
Apache Httpd
Does not scale for the same reasons

You need a new generation of servers

INTALIO, LEADER IN OPEN SOURCE BPM 20C O N F I D E N T I A L

Jetty

Greg Wilkins was the first to explore these
problems

He created the Jetty Continuations which allow
the Jetty server to scale Comet applications

The continuation concept has been incorporated
in the new Servlet 3.0 specification

Jetty 6 and Jetty 7 successfully deployed Comet
applications worldwide

Jetty 8 will implement Servlet 3.0

INTALIO, LEADER IN OPEN SOURCE BPM 21C O N F I D E N T I A L

Comet Classic

Server-side Event-driven Comet Web
Application

INTALIO, LEADER IN OPEN SOURCE BPM 22C O N F I D E N T I A L

Comet Continuation

Server-side Event-driven Comet Web
Application

INTALIO, LEADER IN OPEN SOURCE BPM 23C O N F I D E N T I A L

Polling vs Comet

Comet (Continuations)
1000 clients, long poll timeout 20 seconds
Assume 160 ms processing time

Request is run twice

Yields 50 requests/s, 8 concurrent requests
8 x 1 MB stack size = 8 MB

Limits
Most likely, the server is connection bound, then CPU

bound
Scales better than normal polling

INTALIO, LEADER IN OPEN SOURCE BPM 24C O N F I D E N T I A L

Continuations

With Comet, we have an asynchronous
bidirectional web
Looks like messaging to me

Writing server-side code based on continuations
(or, in the future, with Servlet 3.0) is difficult
 It really is, you don't want to do it

Web applications should be easy to write
Can we abstract the gory details into a library ?

INTALIO, LEADER IN OPEN SOURCE BPM 25C O N F I D E N T I A L

The CometD Project

INTALIO, LEADER IN OPEN SOURCE BPM 26C O N F I D E N T I A L

The CometD Project

We have now a scalable bidirectional web
What do we need to write applications ?
We don't want to care about long-polling the server,

respecting possible constraints
 In browsers, the same-origin policy and the two

connection limit

We want:
A clean way to publish data to the server
A clean way to receive data from the server
A clean way to “emit” server-side events to clients

INTALIO, LEADER IN OPEN SOURCE BPM 27C O N F I D E N T I A L

The CometD Project

There are a lot of other details to take care of
Authentication
Network Failures

With possible automatic retry

Message Batching
Message Acknowledgment
Etc.

From these and other requirements and input,
the CometD project was born

INTALIO, LEADER IN OPEN SOURCE BPM 28C O N F I D E N T I A L

The CometD Project

The CometD project delivers libraries that use the
Comet technique (long poll) to transport Bayeux
messages

The Bayeux protocol specifies the format of the
Bayeux messages
 It is based on JSON

Libraries are available in
 JavaScript (client)
 Java (client and server)
Perl & Python (less active)

INTALIO, LEADER IN OPEN SOURCE BPM 29C O N F I D E N T I A L

Bayeux

Bayeux is at its core a publish/subscribe
messaging system
Very similar to JMS

A Bayeux channel is a “topic” you may
subscribe interest to
And you will be delivered messages published onto

You can publish messages to a channel
The server automatically delivers the messages to

all channel subscribers

INTALIO, LEADER IN OPEN SOURCE BPM 30C O N F I D E N T I A L

Bayeux

var cometd = $.cometd; // jQuery style

cometd.init('http://myserver/cometd');

cometd.subscribe('/my/channel', function(message)
{
 var data = message.data;
 // Do something with the data
});

cometd.publish('/my/channel', {
 userId: 1,
 chatText: 'hello!'
});

cometd.disconnect();

INTALIO, LEADER IN OPEN SOURCE BPM 31C O N F I D E N T I A L

CometD JavaScript

The JavaScript library features
Common code with bindings for Dojo and jQuery
Highly configurable
Message batching
Automatic reconnection
Pluggable transports

Long Polling and Callback Polling available

Supports Cross-Origin servers
Extensible

Many extensions already available

INTALIO, LEADER IN OPEN SOURCE BPM 32C O N F I D E N T I A L

CometD Java

The Java library features
Highly scalable (the client is based on Jetty

asynchronous HTTP Client)
Message batching
Lazy messages
A variety of listeners to be notified of relevant events

in client and server
Data filters to automatically convert data
Extensions
SecurityPolicy

INTALIO, LEADER IN OPEN SOURCE BPM 33C O N F I D E N T I A L

Performance

INTALIO, LEADER IN OPEN SOURCE BPM 34C O N F I D E N T I A L

DEMO

INTALIO, LEADER IN OPEN SOURCE BPM 35C O N F I D E N T I A L

Questions & Answers

	Title
	Slide 2
	Folie 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

