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About me

Simone Bordet (sbordet@webtide.com)
Senior Java Engineer at Webtide

– Previously freelance, SimulaLabs, Hewlett-Packard

Active in OpenSource and Java Communities
– Jetty, Cometd, MX4J, Foxtrot, Livetribe, etc.
– Co-Leader of Java User Group Torino, Italy

Currently working on:
– Comet server-side and client-side applications

• Clients for browsers, J2ME and Android

– Server-side asynchronous IO and protocols
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Agenda

What are Comet web applications

Impacts of Comet web applications

The CometD project

Demo

Questions & Answers
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What are Comet
Web Applications
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Web Apps History

Web Classic Interaction



INTALIO, LEADER IN OPEN SOURCE BPM 6C O N F I D E N T I A L

Web Apps History

Web Classic Interaction

Request Pattern
Bursts of requests for HTML, images, CSS, JS

Navigation Mode
Full page based

Interaction with Server
Reactive, changes happen on user click
Resources download
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Web Apps History

Web Dynamic HTML Interaction
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Web Apps History

Web Dynamic HTML Interaction

Request Pattern, Navigation Mode, Interaction with 
Server
Same as before

Uses JavaScript
 Input validation
DOM manipulation
Local UI effects
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Web Apps History

Web Classic + XMLHttpRequest
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Web Apps History

Web Classic + XHR
Request Pattern: changed

Bursts (for classic) + Concurrent (for XHR)
Requires synchronization in server code

Navigation Mode: radically changed
Sometimes full page, most often single page with partial 

changes

Interaction with Server: changed
Reactive as before
Data download
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Server-side Events

Heavy usage of client-side JavaScript and XHR 
changed the way we create and develop webapps
They become rich, and raise expectations

Traditionally, web experience was driven by the 
client
Can webapps now be also driven by server-side events ?
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Server-side Events

Server-side Event-driven Polling Web 
Application
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Server-side Events

Polling Strategy for Server-side Events Notification
Simple to implement (“I can do that !”)
Sensible latency for event notifications

Can look like a denial of service attack to the poor 
server
When poll interval is short to reduce event latency
When the number of clients is large

We can do better !
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Server-side Events

Server-side Event-driven Comet Web 
Application
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Server-side Events

Comet Strategy for Server-side Events Notification
Difficult to implement right
Minimal latency for event notification

One request (the “long poll”) is held by the server 
until:
A server-side events arrives
A timeout expires
The client disconnects
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Impacts on the Server
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Polling vs Comet

What are the impacts of the polling and comet 
models on servers ?

Polling
1000 clients, each polling every 5 seconds
Assume 100 ms poll processing time
Yields 200 requests/s, 20 concurrent requests
20 threads x 1 MB stack size = 20 MB

Limits
Most likely, the server is CPU bound, then connection 

bound
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Polling vs Comet

Comet (Classic)
1000 clients, long poll timeout 20 seconds
Yields 1000 concurrent requests !
1000 x 1 MB stack size = 1 GB

Limits
Most likely, the server is memory bound
Note that stack memory is outside Java heap
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Polling vs Comet

Comet has huge impacts on server-side

You cannot just deploy your comet application in a 
normal configuration

You cannot deploy your comet application behind 
Apache Httpd
Does not scale for the same reasons

You need a new generation of  servers
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Jetty

Greg Wilkins was the first to explore these 
problems

He created the Jetty Continuations which allow 
the Jetty server to scale Comet applications

The continuation concept has been incorporated 
in the new Servlet 3.0 specification

Jetty 6 and Jetty 7 successfully deployed Comet 
applications worldwide

Jetty 8 will implement Servlet 3.0
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Comet Classic

Server-side Event-driven Comet Web 
Application
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Comet Continuation

Server-side Event-driven Comet Web 
Application
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Polling vs Comet

Comet (Continuations)
1000 clients, long poll timeout 20 seconds
Assume 160 ms processing time

Request is run twice

Yields 50 requests/s, 8 concurrent requests
8 x 1 MB stack size = 8 MB

Limits
Most likely, the server is connection bound, then CPU 

bound
Scales better than normal polling
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Continuations

With Comet, we have an asynchronous 
bidirectional web
Looks like messaging to me

Writing server-side code based on continuations 
(or, in the future, with Servlet 3.0) is difficult
 It really is, you don't want to do it

Web applications should be easy to write
Can we abstract the gory details into a library ?
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The CometD Project
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The CometD Project

We have now a scalable bidirectional web
What do we need to write applications ?
We don't want to care about long-polling the server, 

respecting possible constraints
 In browsers, the same-origin policy and the two 

connection limit

We want:
A clean way to publish data to the server
A clean way to receive data from the server
A clean way to “emit” server-side events to clients
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The CometD Project

There are a lot of other details to take care of
Authentication
Network Failures

With possible automatic retry 

Message Batching
Message Acknowledgment
Etc.

From these and other requirements and input, 
the CometD project was born
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The CometD Project

The CometD project delivers libraries that use the 
Comet technique (long poll) to transport Bayeux 
messages

The Bayeux protocol specifies the format of the 
Bayeux messages
 It is based on JSON

Libraries are available in
 JavaScript (client)
 Java (client and server)
Perl & Python (less active)
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Bayeux

Bayeux is at its core a publish/subscribe 
messaging system
Very similar to JMS

A Bayeux channel is a “topic” you may 
subscribe interest to
And you will be delivered messages published onto

You can publish messages to a channel
The server automatically delivers the messages to 

all channel subscribers
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Bayeux

var cometd = $.cometd;  // jQuery style

cometd.init('http://myserver/cometd');

cometd.subscribe('/my/channel', function(message)
{
    var data = message.data;
    // Do something with the data
});

cometd.publish('/my/channel', {
    userId: 1,
    chatText: 'hello!'
});

cometd.disconnect();
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CometD JavaScript

The JavaScript library features
Common code with bindings for Dojo and jQuery
Highly configurable
Message batching
Automatic reconnection
Pluggable transports

Long Polling and Callback Polling available

Supports Cross-Origin servers
Extensible

Many extensions already available
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CometD Java

The Java library features
Highly scalable (the client is based on Jetty 

asynchronous HTTP Client)
Message batching
Lazy messages
A variety of listeners to be notified of relevant events 

in client and server
Data filters to automatically convert data
Extensions
SecurityPolicy
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Performance
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DEMO
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Questions & Answers
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