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About me

Simone Bordet (sbordet@intalio.com)
Senior Java Engineer @ Intalio/Webtide

Previously freelance, SimulaLabs, HP

Active in Open Source and Java communities
 Jetty, CometD, MX4J, Foxtrot, LiveTribe, etc.
Co-Leader of the Java User Group Torino

Currently working on:
Comet client-side and server-side applications

Client for browsers, J2ME and Android

Server-side asynchronous I/O and protocols

mailto:sbordet@intalio.com
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Do you need to tune the GC ?
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GC Tuning Needed ?

Make your application right

Make it even righter

Make it fast
Use profilers and similar tools

At the end, when all the rest is done, and your 
application has been live  for a while, then you 
can look at the Garbage Collector
Rarely makes any sense doing it before
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GC Tuning Needed ?

It is very difficult to replicate real load in a test 
environment

To tune the Garbage Collector, you need 
information taken from the live system

It will take a while to gather information
Allocate time in the order of weeks to this activity

But sometimes, it really makes the difference
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Do I need to tune the GC ?

A) No, but let's have some fun
B) Yes, my application needs it
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Agenda

JVM Memory Layout, Allocation and Collection

Garbage Collector Algorithms

Monitoring the Garbage Collector

Tuning the Garbage Collector
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JVM Memory Layout,
Allocation and Collection



INTALIO – LEADER IN OPEN SOURCE BPM 9C O N F I D E N T I A L

JVM Memory Layout

The JVM divides the memory it manages in 3 
major “generations”:
Young Generation (or “New”)
Old Generation (or “Tenured”)
Permanent Generation

Young + Old = Total Heap

-Xmx<size> sizes the total heap
Default Young:Old ratio on 64-bit server JVM is 1:2
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JVM Memory Layout

The Young Generation is again divided in 3 
“spaces”:
Eden Space
Survivor Space 0
Survivor Space 1

-Xmn<size> sizes the Young Generation
There are other flags to fine tune it, but this works 

well
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JVM Memory Layout
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JVM Memory Layout

Why does the JVM have “generations” ?
Careful analysis of Java applications showed 

that there are 2 types of garbage:
“short-term” garbage, whose life is very short (few 

seconds or less)
“long-term” garbage, whose life is longer (few 

minutes to application lifetime)

“Short-term” garbage is often responsible of 
most of the garbage generated
An efficient GC for “short-term” garbage can free up 

most of the heap
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JVM Memory Layout
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JVM Allocation Strategies

What happens when the JVM needs to allocate 
memory ?

It tries to allocate it in Young Generation, in 
the Eden space

If that fails (not enough space left), then:
 It triggers a Young Generation collection; or
 It allocates it in the Old Generation directly (rare 

and possibly try to avoid it)



INTALIO – LEADER IN OPEN SOURCE BPM 15C O N F I D E N T I A L

JVM Young Generation Collection

When the Eden Space is full,  a so called 
“minor collection” is triggered
Eden Space is emptied
Survivor objects are copied into Survivor Space 0
Survivor Space 1 is copied into Survivor Space 0

The Survivor Age is increased
Default Survivor Age on 64-bit server JVM is 4

Older survivors overflow to the Old Generation 

If not enough room in Survivor Space ?
Overflow to Old Generation
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JVM Old Generation Collection

When the Old Generation is full, a so called 
“full collection” is triggered

Exact behavior depends on the GC algorithm

When the GC cannot free memory in the Old 
Generation, an OutOfMemoryError occurs
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Garbage Collector 
Algorithms
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Garbage Collector Algorithms

JDK 6 has 5 Garbage Collector Algorithms:
Parallel (PS – Parallel Scavenge)

Two available for the Young Generation
 -XX:+UseParallelGC, cannot be used with CMS
 -XX:+UseParNewGC, for use with CMS

One available for the Old Generation
XX:+UseParallelOldGC

Concurrent (CMS – Concurrent Mark Sweep)
Only for the Old Generation

 -XX:+UseConcMarkSweepGC

Serial
Only for the Old Generation
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Garbage Collector Algorithms

Parallel == full stop-the-world, multi-threaded
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Garbage Collector Algorithms

CMS == partial stop-the-world, multi threaded  
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Parallel Algorithms

Parallel Algorithms
Grow and Shrink the Generation they work on
Compact the space

Young Generation Algorithms
Collection time depends on number of live objects
Not on the Generation size, not on the amount of 

garbage
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Concurrent Algorithm

CMS Algorithm
Does not compact (its worst “defect”)
Hence it is subject to space fragmentation

What happens when the space is too 
fragmented and allocation fails ?
CMS falls back to the Serial algorithm
Very long stop-the-world pause

Try to never reach that point with CMS
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How many GC ?

There always are 2 collectors running in the 
JVM
One for the Young Generation
One for the Old Generation

You can tune both independently, but they are 
related
This is what makes tuning difficult
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Monitoring the 
Garbage Collector
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Monitoring the collector

-XX:+PrintCommandLineFlags
Reprints all implied options

-XX:+PrintGCDateStamps
-XX:+PrintGCTimeStamps

GC time information

-XX:+PrintGCDetails
GC activity information

-XX:+DisableExplicitGC 
Avoids RMI's System.gc()

-Xloggc:<file>
Outputs to a file
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Monitoring the collector

Analyze the GC log file to understand:
GC overhead

time spent in GC / time spent in application

Max stop-the-world pause
Allocation rate and promotion rate

Use jstat to gather further information
 jstat -gcutil <pid>

GC overhead vs Max stop-the-world pause
Overhead can be really low, but pauses really long
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Tuning the
Garbage Collector
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Tuning the Garbage Collector

You need to choose/tune 2 things:
Generation Sizes
GC algorithm

Advice #1: 
Make your heap BIG

Big heaps reduce the frequency of collections
And increase the chance that objects do not survive

Use -Xms<size> == -Xmx<size>
Saves grow/shrink time
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Tuning the Garbage Collector

Young Generation sizing: make it BIG
Can go up to same size as Old Generation
Remember: collection time does not depend on size

Advice #2: 
Maximize garbage in Young Generation

Collection in Young Generation is cheap
Usually not much tuning needed

The GC algorithm will be Parallel
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Tuning the Garbage Collector

Output example (collection frequency: ~35 s)
-XX:+UseParNewGC -XX:+PrintTenuringDistribution

2010-06-02T06:43:08.589-0700: 940.165: [GC 940.165: [ParNew

Desired survivor size 104857600 bytes, new threshold 4 (max 4)

- age   1:   43824512 bytes,   43824512 total

- age   2:   17958408 bytes,   61782920 total

- age   3:   20590872 bytes,   82373792 total

- age   4:   14776712 bytes,   97150504 total

: 1793581K->132958K(1843200K), 0.1019750 secs] 2003784K-
>357779K(5939200K), 0.1021550 secs] [Times: user=0.60 sys=0.04, 
real=0.10 secs] 

Total Heap: 2003784 – 357779 = 1646005 collected (in Young)

Young Generation: 1793581 – 132958 = 1660623

Promoted: 1660623 – 1646005 = 14618

Times: user/real = 6 (6x parallelism)

Ages: ~44 MB age 1; ~18 MB age 2; ~21 MB age 3; ~15 MB age 4
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Tuning the Garbage Collector

Old Generation sizing: make it BIG
Bigger than or equal to Young Generation
Remember: collection time does depend on size

Advice #3:
Try to avoid full collections

Collection in Old Generation is expensive
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Tuning the Garbage Collector

Parallel Old Generation Collector

Has auto-tuning features (“ergonomics”)
Not sure how good / reliable they are

Not much tuning needed anyway

Explicit tuning gives full control
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Tuning the Garbage Collector

Compact Mark Sweep (CMS) Old Generation 
Collector, or “low-pause” collector

Advice #4
Try to avoid promotions

CMS does not compact space
Need to avoid fragmentation

But you can schedule a compacting full GC
For example, at night
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Tuning the Garbage Collector

2010-06-02T10:25:06.432-0700: 14258.007: [GC [1 CMS-initial-mark: 
3304088K(4096000K)] 3427806K(5939200K), 0.0678380 secs] [Times: user=0.06 
sys=0.00, real=0.07 secs] 

2010-06-02T10:25:06.500-0700: 14258.075: [CMS-concurrent-mark-start]

2010-06-02T10:25:07.401-0700: 14258.976: [CMS-concurrent-mark: 0.897/0.901 secs] 
[Times: user=2.42 sys=0.13, real=0.90 secs] 

2010-06-02T10:25:07.401-0700: 14258.976: [CMS-concurrent-preclean-start]

2010-06-02T10:25:07.492-0700: 14259.067: [CMS-concurrent-preclean: 0.076/0.091 
secs] [Times: user=0.15 sys=0.01, real=0.09 secs] 

2010-06-02T10:25:07.492-0700: 14259.067: [CMS-concurrent-abortable-preclean-start]

 CMS: abort preclean due to time 2010-06-02T10:25:12.589-0700: 14264.164: [CMS-
concurrent-abortable-preclean: 4.970/5.097 secs] [Times: user=7.17 sys=0.41, 
real=5.10 secs] 
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Tuning the Garbage Collector

2010-06-02T10:25:12.592-0700: 14264.167: [GC[YG occupancy: 593314 K 
(1843200 K)]14264.168: [Rescan (parallel) , 0.0766200 secs]14264.244: 
[weak refs processing, 0.1023280 secs]14264.347: [class unloading, 
0.0059520 secs]14264.353: [scrub symbol & string tables, 0.0026240 
secs] [1 CMS-remark: 3304088K(4096000K)] 3897403K(5939200K), 
0.1925890 secs] [Times: user=0.70 sys=0.01, real=0.20 secs] 

2010-06-02T10:25:12.785-0700: 14264.361: [CMS-concurrent-sweep-start]

2010-06-02T10:25:15.655-0700: 14267.231: [CMS-concurrent-sweep: 
2.860/2.860 secs] [Times: user=4.37 sys=0.28, real=2.86 secs] 

2010-06-02T10:25:15.655-0700: 14267.231: [CMS-concurrent-reset-start]

2010-06-02T10:25:15.688-0700: 14267.264: [CMS-concurrent-reset: 
0.033/0.033 secs] [Times: user=0.06 sys=0.01, real=0.04 secs] 
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Tuning the Garbage Collector

CMS-initial-mark is the first stop-the-world phase
Followed by a concurrent mark phase
Then a concurrent preclean, that is meant to be 

interrupted
 In this case by a 5 second timeout

CMS-remark is the second stop-the-world phase
Followed by a concurrent sweep phase
Then a final reset phase
The whole CMS cycle took 9.257 s (with a 5 s 

timeout)
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Tuning the Garbage Collector

It is possible to make CMS parallel
 -XX:ParallelCMSThreads=<number>

Trade off between CMS cycle time and 
overhead during concurrent phases
More threads will benefit the application during 

parallel phases, but hurt during concurrent phases

CMS big risk: the collection cannot complete, 
so a compacting full collection is triggered
Which implies BIG pauses
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Tuning the Garbage Collector

CMS triggers by default when Old Generation is 
92% full
Do not trust online sources that say 68%, try yourself

Threshold at 92% could be too high
Leaves little space for big allocations

Remember, it's fragmented

A promotion from Young Generation may not find 
enough space
And a compacting full collection will trigger: big pause

A CMS collection does not finish before the Old 
Generation is full
“Concurrent mode failure”
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Tuning the Garbage Collector

The most important tuning parameter for CMS:
 -XX:CMSInitiatingOccupancyFraction

Tells at what percentage trigger the CMS 
collection
You need trials and errors to tune it

Trade off between collection frequency, 
collection overhead and risk of big pauses
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Questions
&

Answers
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References

JDK 6 GC Reference:
http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.

html

JDK 6 JVM Options:
http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp

Jon the Collector's blog:
http://blogs.sun.com/jonthecollector

GC mailing lists archives:
http://mail.openjdk.java.net/mailman/listinfo/hotspot-gc-use

http://mail.openjdk.java.net/mailman/listinfo/hotspot-gc-dev
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