
INTALIO – LEADER IN OPEN SOURCE BPM 1C O N F I D E N T I A L

Garbage Collector
Magic Tuning

Explained

Simone Bordet
sbordet@intalio.com

INTALIO – LEADER IN OPEN SOURCE BPM 2C O N F I D E N T I A L

About me

Simone Bordet (sbordet@intalio.com)
Senior Java Engineer @ Intalio/Webtide

Previously freelance, SimulaLabs, HP

Active in Open Source and Java communities
 Jetty, CometD, MX4J, Foxtrot, LiveTribe, etc.
Co-Leader of the Java User Group Torino

Currently working on:
Comet client-side and server-side applications

Client for browsers, J2ME and Android

Server-side asynchronous I/O and protocols

mailto:sbordet@intalio.com

INTALIO – LEADER IN OPEN SOURCE BPM 3C O N F I D E N T I A L

Do you need to tune the GC ?

INTALIO – LEADER IN OPEN SOURCE BPM 4C O N F I D E N T I A L

GC Tuning Needed ?

Make your application right

Make it even righter

Make it fast
Use profilers and similar tools

At the end, when all the rest is done, and your
application has been live for a while, then you
can look at the Garbage Collector
Rarely makes any sense doing it before

INTALIO – LEADER IN OPEN SOURCE BPM 5C O N F I D E N T I A L

GC Tuning Needed ?

It is very difficult to replicate real load in a test
environment

To tune the Garbage Collector, you need
information taken from the live system

It will take a while to gather information
Allocate time in the order of weeks to this activity

But sometimes, it really makes the difference

INTALIO – LEADER IN OPEN SOURCE BPM 6C O N F I D E N T I A L

Do I need to tune the GC ?

A) No, but let's have some fun
B) Yes, my application needs it

INTALIO – LEADER IN OPEN SOURCE BPM 7C O N F I D E N T I A L

Agenda

JVM Memory Layout, Allocation and Collection

Garbage Collector Algorithms

Monitoring the Garbage Collector

Tuning the Garbage Collector

INTALIO – LEADER IN OPEN SOURCE BPM 8C O N F I D E N T I A L

JVM Memory Layout,
Allocation and Collection

INTALIO – LEADER IN OPEN SOURCE BPM 9C O N F I D E N T I A L

JVM Memory Layout

The JVM divides the memory it manages in 3
major “generations”:
Young Generation (or “New”)
Old Generation (or “Tenured”)
Permanent Generation

Young + Old = Total Heap

-Xmx<size> sizes the total heap
Default Young:Old ratio on 64-bit server JVM is 1:2

INTALIO – LEADER IN OPEN SOURCE BPM 10C O N F I D E N T I A L

JVM Memory Layout

The Young Generation is again divided in 3
“spaces”:
Eden Space
Survivor Space 0
Survivor Space 1

-Xmn<size> sizes the Young Generation
There are other flags to fine tune it, but this works

well

INTALIO – LEADER IN OPEN SOURCE BPM 11C O N F I D E N T I A L

JVM Memory Layout

INTALIO – LEADER IN OPEN SOURCE BPM 12C O N F I D E N T I A L

JVM Memory Layout

Why does the JVM have “generations” ?
Careful analysis of Java applications showed

that there are 2 types of garbage:
“short-term” garbage, whose life is very short (few

seconds or less)
“long-term” garbage, whose life is longer (few

minutes to application lifetime)

“Short-term” garbage is often responsible of
most of the garbage generated
An efficient GC for “short-term” garbage can free up

most of the heap

INTALIO – LEADER IN OPEN SOURCE BPM 13C O N F I D E N T I A L

JVM Memory Layout

INTALIO – LEADER IN OPEN SOURCE BPM 14C O N F I D E N T I A L

JVM Allocation Strategies

What happens when the JVM needs to allocate
memory ?

It tries to allocate it in Young Generation, in
the Eden space

If that fails (not enough space left), then:
 It triggers a Young Generation collection; or
 It allocates it in the Old Generation directly (rare

and possibly try to avoid it)

INTALIO – LEADER IN OPEN SOURCE BPM 15C O N F I D E N T I A L

JVM Young Generation Collection

When the Eden Space is full, a so called
“minor collection” is triggered
Eden Space is emptied
Survivor objects are copied into Survivor Space 0
Survivor Space 1 is copied into Survivor Space 0

The Survivor Age is increased
Default Survivor Age on 64-bit server JVM is 4

Older survivors overflow to the Old Generation

If not enough room in Survivor Space ?
Overflow to Old Generation

INTALIO – LEADER IN OPEN SOURCE BPM 16C O N F I D E N T I A L

JVM Old Generation Collection

When the Old Generation is full, a so called
“full collection” is triggered

Exact behavior depends on the GC algorithm

When the GC cannot free memory in the Old
Generation, an OutOfMemoryError occurs

INTALIO – LEADER IN OPEN SOURCE BPM 17C O N F I D E N T I A L

Garbage Collector
Algorithms

INTALIO – LEADER IN OPEN SOURCE BPM 18C O N F I D E N T I A L

Garbage Collector Algorithms

JDK 6 has 5 Garbage Collector Algorithms:
Parallel (PS – Parallel Scavenge)

Two available for the Young Generation
 -XX:+UseParallelGC, cannot be used with CMS
 -XX:+UseParNewGC, for use with CMS

One available for the Old Generation
XX:+UseParallelOldGC

Concurrent (CMS – Concurrent Mark Sweep)
Only for the Old Generation

 -XX:+UseConcMarkSweepGC

Serial
Only for the Old Generation

INTALIO – LEADER IN OPEN SOURCE BPM 19C O N F I D E N T I A L

Garbage Collector Algorithms

Parallel == full stop-the-world, multi-threaded

INTALIO – LEADER IN OPEN SOURCE BPM 20C O N F I D E N T I A L

Garbage Collector Algorithms

CMS == partial stop-the-world, multi threaded

INTALIO – LEADER IN OPEN SOURCE BPM 21C O N F I D E N T I A L

Parallel Algorithms

Parallel Algorithms
Grow and Shrink the Generation they work on
Compact the space

Young Generation Algorithms
Collection time depends on number of live objects
Not on the Generation size, not on the amount of

garbage

INTALIO – LEADER IN OPEN SOURCE BPM 22C O N F I D E N T I A L

Concurrent Algorithm

CMS Algorithm
Does not compact (its worst “defect”)
Hence it is subject to space fragmentation

What happens when the space is too
fragmented and allocation fails ?
CMS falls back to the Serial algorithm
Very long stop-the-world pause

Try to never reach that point with CMS

INTALIO – LEADER IN OPEN SOURCE BPM 23C O N F I D E N T I A L

How many GC ?

There always are 2 collectors running in the
JVM
One for the Young Generation
One for the Old Generation

You can tune both independently, but they are
related
This is what makes tuning difficult

INTALIO – LEADER IN OPEN SOURCE BPM 24C O N F I D E N T I A L

Monitoring the
Garbage Collector

INTALIO – LEADER IN OPEN SOURCE BPM 25C O N F I D E N T I A L

Monitoring the collector

-XX:+PrintCommandLineFlags
Reprints all implied options

-XX:+PrintGCDateStamps
-XX:+PrintGCTimeStamps

GC time information

-XX:+PrintGCDetails
GC activity information

-XX:+DisableExplicitGC
Avoids RMI's System.gc()

-Xloggc:<file>
Outputs to a file

INTALIO – LEADER IN OPEN SOURCE BPM 26C O N F I D E N T I A L

Monitoring the collector

Analyze the GC log file to understand:
GC overhead

time spent in GC / time spent in application

Max stop-the-world pause
Allocation rate and promotion rate

Use jstat to gather further information
 jstat -gcutil <pid>

GC overhead vs Max stop-the-world pause
Overhead can be really low, but pauses really long

INTALIO – LEADER IN OPEN SOURCE BPM 27C O N F I D E N T I A L

Tuning the
Garbage Collector

INTALIO – LEADER IN OPEN SOURCE BPM 28C O N F I D E N T I A L

Tuning the Garbage Collector

You need to choose/tune 2 things:
Generation Sizes
GC algorithm

Advice #1:
Make your heap BIG

Big heaps reduce the frequency of collections
And increase the chance that objects do not survive

Use -Xms<size> == -Xmx<size>
Saves grow/shrink time

INTALIO – LEADER IN OPEN SOURCE BPM 29C O N F I D E N T I A L

Tuning the Garbage Collector

Young Generation sizing: make it BIG
Can go up to same size as Old Generation
Remember: collection time does not depend on size

Advice #2:
Maximize garbage in Young Generation

Collection in Young Generation is cheap
Usually not much tuning needed

The GC algorithm will be Parallel

INTALIO – LEADER IN OPEN SOURCE BPM 30C O N F I D E N T I A L

Tuning the Garbage Collector

Output example (collection frequency: ~35 s)
-XX:+UseParNewGC -XX:+PrintTenuringDistribution

2010-06-02T06:43:08.589-0700: 940.165: [GC 940.165: [ParNew

Desired survivor size 104857600 bytes, new threshold 4 (max 4)

- age 1: 43824512 bytes, 43824512 total

- age 2: 17958408 bytes, 61782920 total

- age 3: 20590872 bytes, 82373792 total

- age 4: 14776712 bytes, 97150504 total

: 1793581K->132958K(1843200K), 0.1019750 secs] 2003784K-
>357779K(5939200K), 0.1021550 secs] [Times: user=0.60 sys=0.04,
real=0.10 secs]

Total Heap: 2003784 – 357779 = 1646005 collected (in Young)

Young Generation: 1793581 – 132958 = 1660623

Promoted: 1660623 – 1646005 = 14618

Times: user/real = 6 (6x parallelism)

Ages: ~44 MB age 1; ~18 MB age 2; ~21 MB age 3; ~15 MB age 4

INTALIO – LEADER IN OPEN SOURCE BPM 31C O N F I D E N T I A L

Tuning the Garbage Collector

Old Generation sizing: make it BIG
Bigger than or equal to Young Generation
Remember: collection time does depend on size

Advice #3:
Try to avoid full collections

Collection in Old Generation is expensive

INTALIO – LEADER IN OPEN SOURCE BPM 32C O N F I D E N T I A L

Tuning the Garbage Collector

Parallel Old Generation Collector

Has auto-tuning features (“ergonomics”)
Not sure how good / reliable they are

Not much tuning needed anyway

Explicit tuning gives full control

INTALIO – LEADER IN OPEN SOURCE BPM 33C O N F I D E N T I A L

Tuning the Garbage Collector

Compact Mark Sweep (CMS) Old Generation
Collector, or “low-pause” collector

Advice #4
Try to avoid promotions

CMS does not compact space
Need to avoid fragmentation

But you can schedule a compacting full GC
For example, at night

INTALIO – LEADER IN OPEN SOURCE BPM 34C O N F I D E N T I A L

Tuning the Garbage Collector

2010-06-02T10:25:06.432-0700: 14258.007: [GC [1 CMS-initial-mark:
3304088K(4096000K)] 3427806K(5939200K), 0.0678380 secs] [Times: user=0.06
sys=0.00, real=0.07 secs]

2010-06-02T10:25:06.500-0700: 14258.075: [CMS-concurrent-mark-start]

2010-06-02T10:25:07.401-0700: 14258.976: [CMS-concurrent-mark: 0.897/0.901 secs]
[Times: user=2.42 sys=0.13, real=0.90 secs]

2010-06-02T10:25:07.401-0700: 14258.976: [CMS-concurrent-preclean-start]

2010-06-02T10:25:07.492-0700: 14259.067: [CMS-concurrent-preclean: 0.076/0.091
secs] [Times: user=0.15 sys=0.01, real=0.09 secs]

2010-06-02T10:25:07.492-0700: 14259.067: [CMS-concurrent-abortable-preclean-start]

 CMS: abort preclean due to time 2010-06-02T10:25:12.589-0700: 14264.164: [CMS-
concurrent-abortable-preclean: 4.970/5.097 secs] [Times: user=7.17 sys=0.41,
real=5.10 secs]

INTALIO – LEADER IN OPEN SOURCE BPM 35C O N F I D E N T I A L

Tuning the Garbage Collector

2010-06-02T10:25:12.592-0700: 14264.167: [GC[YG occupancy: 593314 K
(1843200 K)]14264.168: [Rescan (parallel) , 0.0766200 secs]14264.244:
[weak refs processing, 0.1023280 secs]14264.347: [class unloading,
0.0059520 secs]14264.353: [scrub symbol & string tables, 0.0026240
secs] [1 CMS-remark: 3304088K(4096000K)] 3897403K(5939200K),
0.1925890 secs] [Times: user=0.70 sys=0.01, real=0.20 secs]

2010-06-02T10:25:12.785-0700: 14264.361: [CMS-concurrent-sweep-start]

2010-06-02T10:25:15.655-0700: 14267.231: [CMS-concurrent-sweep:
2.860/2.860 secs] [Times: user=4.37 sys=0.28, real=2.86 secs]

2010-06-02T10:25:15.655-0700: 14267.231: [CMS-concurrent-reset-start]

2010-06-02T10:25:15.688-0700: 14267.264: [CMS-concurrent-reset:
0.033/0.033 secs] [Times: user=0.06 sys=0.01, real=0.04 secs]

INTALIO – LEADER IN OPEN SOURCE BPM 36C O N F I D E N T I A L

Tuning the Garbage Collector

CMS-initial-mark is the first stop-the-world phase
Followed by a concurrent mark phase
Then a concurrent preclean, that is meant to be

interrupted
 In this case by a 5 second timeout

CMS-remark is the second stop-the-world phase
Followed by a concurrent sweep phase
Then a final reset phase
The whole CMS cycle took 9.257 s (with a 5 s

timeout)

INTALIO – LEADER IN OPEN SOURCE BPM 37C O N F I D E N T I A L

Tuning the Garbage Collector

It is possible to make CMS parallel
 -XX:ParallelCMSThreads=<number>

Trade off between CMS cycle time and
overhead during concurrent phases
More threads will benefit the application during

parallel phases, but hurt during concurrent phases

CMS big risk: the collection cannot complete,
so a compacting full collection is triggered
Which implies BIG pauses

INTALIO – LEADER IN OPEN SOURCE BPM 38C O N F I D E N T I A L

Tuning the Garbage Collector

CMS triggers by default when Old Generation is
92% full
Do not trust online sources that say 68%, try yourself

Threshold at 92% could be too high
Leaves little space for big allocations

Remember, it's fragmented

A promotion from Young Generation may not find
enough space
And a compacting full collection will trigger: big pause

A CMS collection does not finish before the Old
Generation is full
“Concurrent mode failure”

INTALIO – LEADER IN OPEN SOURCE BPM 39C O N F I D E N T I A L

Tuning the Garbage Collector

The most important tuning parameter for CMS:
 -XX:CMSInitiatingOccupancyFraction

Tells at what percentage trigger the CMS
collection
You need trials and errors to tune it

Trade off between collection frequency,
collection overhead and risk of big pauses

INTALIO – LEADER IN OPEN SOURCE BPM 40C O N F I D E N T I A L

Questions
&

Answers

INTALIO – LEADER IN OPEN SOURCE BPM 41C O N F I D E N T I A L

References

JDK 6 GC Reference:
http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.

html

JDK 6 JVM Options:
http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp

Jon the Collector's blog:
http://blogs.sun.com/jonthecollector

GC mailing lists archives:
http://mail.openjdk.java.net/mailman/listinfo/hotspot-gc-use

http://mail.openjdk.java.net/mailman/listinfo/hotspot-gc-dev

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

